Hartman-Watson distribution and hyperbolic-like heat kernels

نویسندگان

چکیده

We relate Gruet's formula for the heat kernel on real hyperbolic spaces to commonly used one derived from Millson induction and distinguishing parity of dimensions. The bridge between both formulas is settled by Yor's result joint distribution a Brownian motion its exponential functional at fixed time. This allows further with parameter Jacobi operator derive new integral representation Maass Laplacian. When applied harmonic AN groups (known also as Damek-Ricci spaces), yields their corresponding kernels through modified Bessel function second kind Hartman-Watson distribution. newly obtained has merit unify existing in same way does spaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Laguerre process and generalized Hartman--Watson law

In this paper, we study complex Wishart processes or the so-called Laguerre processes (Xt)t≥0. We are interested in the behaviour of the eigenvalue process; we derive some useful stochastic differential equations and compute both the infinitesimal generator and the semi-group. We also give absolute-continuity relations between different indices. Finally, we compute the density function of the s...

متن کامل

Heat Kernels and Cycles

We use the heat kernel on a compact oriented Riemannian manifold to assign to a sequence of cycles C1, . . . , Ck a real number (C1, . . . , Ck), provided the Ci satisfy certain conditions. If k = 2 then (C1, C2) will be the ordinary topological linking number, an integer, while if k ≥ 3 then (C1, . . . , Ck) will involve also iterated integrals of harmonic forms representing the Poincare duals...

متن کامل

N ov 2 00 6 LAGUERRE PROCESS AND GENERALIZED HARTMAN - WATSON LAW

In this paper, we study complex Wishart processes or the so-called Laguerre processes (Xt) t≥0. We are interested in the behaviour of the eigenvalue process, we derive some useful stochastic differential equations and compute both the infinitesimal generator and the semi-group. We also give absolute-continuity relations between different indices. Finally, we compute the density function of the ...

متن کامل

Geodesics and Approximate Heat Kernels

We use the gradient flow on the path space to obtain estimates on the heat kernel k(t, x, y) on a complete Riemannian manifold. This approach gives a sharp formula for the small-time asymptotics of k(t, x, y) and an upper bound for all time for pairs x and y are not conjugate. It also gives a theorem about convolutions of heat kernels that makes precise the intuition that heat flows in packets ...

متن کامل

Heat Kernels of Metric Trees and Applications

We consider the heat semigroup generated by the Laplace operator on metric trees. Among our results we show how the behavior of the associated heat kernel depends on the geometry of the tree. As applications we establish new eigenvalue estimates for Schrödinger operators on metric trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin Des Sciences Mathematiques

سال: 2022

ISSN: ['0007-4497', '1952-4773']

DOI: https://doi.org/10.1016/j.bulsci.2022.103098